Effect of nalidixic acid and hydroxyurea on division ability of Escherichia coli fil+ and lon- strains.
نویسندگان
چکیده
Short periods of incubation in medium containing nalidixic acid or hydroxyurea, followed by a return to normal growth conditions, induced filament formation in Escherichia coli B (fil(+)) and AB1899NM (lon(-)) but not in B/r (fil(-)) and AB1157 (lon(+)). These drugs reversibly stopped deoxyribonucleic acid (DNA) synthesis with little or no effect on ribonucleic acid (RNA) synthesis or mass increase. The initial imbalance caused by incubation in these drugs was the same for B and B/r as was macromolecular synthesis following a return to normal growth conditions. DNA degradation caused by nalidixic acid was measured and found to be the same for B and B/r. Hydroxyurea caused no DNA degradation in these two strains. Survival curves as determined under various conditions by colony formation suggested that the property of filament formation was responsible for the extrasensitivity of fil(+) and lon(-) strains to either nalidixic acid or hydroxyurea. E. coli B was more sensitive to either drug than was B/r or B(s-1). Pantoyl lactone or liquid holding treatment aided division and colony formation of nalidixic acid-treated B but had no effect on B/r. Likewise, the filament-former AB1899NM was more sensitive to nalidixic acid than was the non-filament-former AB1157. The sensitivity of B/r and B(s-1) to nalidixic acid was nearly the same except at longer times in nalidixic acid, when B(s-1) appeared more resistant. Even though nalidixic acid, hydroxyurea, and ultraviolet light may produce quite different molecular alterations in E. coli, they all cause a metabolic imbalance resulting in a lowered ratio of DNA to RNA and protein. We propose that it is this imbalance per se rather than any specific primary chemical or photochemical alterations which leads to filament formation by some genetically susceptible bacterial strains such as lon(-) and fil(+).
منابع مشابه
Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children
Abstract Background and Objective: Escherichia coli is the most common cause of urinary tract infections in children and the leading cause of intra-abdominal infections (peritonitis and abscess) followed intestinal injuries. Urinary tract infection, including cystitis and pyelonephritis, is a common childhood infection. E. coli causes more than 90 percent of the community acquired and 50% of ho...
متن کاملEvaluation of the antibiotic resistance and prevalence of uropathogenic Escherichia coli and detection of traT gene in isolated from patients referred to Abadan hospitals during 2017-2018
Objective: Escherichia coli is one of the most important causes agents of urinary tract infection in human. Thus, identification of Escherichia coli resistance patterns seems to be necessary. traT gene has been reported variable in Escherichia coli strains isolated from urinary tract infection. Therefore, the aim of this study was to investigate the prevalence of uropathogenic Escherichia coli ...
متن کاملLon protease is essential for paradoxical survival of Escherichia coli exposed to high concentrations of quinolone.
A deficiency of the Escherichia coli Lon protease blocked paradoxical survival occurring at very high nalidixic acid concentrations. The absence of Lon also blocked a parallel increase in cell lysate viscosity likely to reflect DNA size. Thus, Lon may participate in repairing quinolone-mediated DNA lesions formed at high drug concentrations.
متن کاملRegulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death.
Mutations in sulA (sfiA) block the filamentation and death of capR (lon) mutants that occur after treatments that either damage DNA or inhibit DNA replication and thereby induce the SOS response. Previous sulA-lacZ gene fusion studies showed that sulA is transcriptionally regulated by the SOS response system (lexA/recA). SulA protein has been hypothesized to be additionally regulated proteolyti...
متن کاملThymineless death in Escherichia coli 15T- and recombinants of 15T- and Escherichia coli K-12.
Thymineless death was examined in Escherichia coli 15T(-) and recombinants of 15T(-) and E. coli K-12. Those strains that were very sensitive to thymine deprivation were also very sensitive to a variety of inducing agents (mitomycin C, ultraviolet light, hydroxyurea, and nalidixic acid). Those strains that were relatively resistant to thymineless death were also relatively resistant to the indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 1968